Fast and readable analysis with Bamboo

ROQT user workshop

Sébastien Wertz
May 9", 2022

B UCLouvain @

History & Motivation

» Original author: Pieter David (left CMS)

» Development started in 2018, after recognizing increasing complexity of
multi-year analyses

» Goal: find a way to write analyses that was

» Easy to write, modify, share
» Fast
— usually one or the other (or neither), rarely both...

» CMS’'s NanoAOD + RDataFrame: a match made in heaven?

» RDataFrame reduces boilerplate, declarative, but: writing full analysis
(with all systematics, bookkeeping..) can still be daunting

RDataFrame: use it directly? ...

Typical example: dimuon invariant mass (*):

Using C++ lambdas:

using ROOT::Math::VectorUtil::InvariantMass;
using LorentzVector = ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",
[] (const auto§ pt, const auto§ eta, const auto§ phi, const auto§ m) {
return InvariantMass(LorentzVector(pt[0], eta[@], phi[@], m[@]),
LorentzVector(pt[1], eta[1], phi[1], m[1]));
}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}

).HistolD(..., "Dimuon_mass", ...);
How about:
» Additional selections

» Adding collection cross-cleaning

» Sorting all quantities associated with an object
> For jets: repeat for all systematic variations
>

(*): not the only way to do it, but conclusion remains

RDataFrame: use it directly? ...

Typical example: dimuon invariant mass (*):

Or, using JITing:

df.Define("Dimuon_mass_v2",
"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_etal[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"
).HistolD(..., "Dimuon_mass_v2", ...);

How about:

> Additional selections
» Adding collection cross-cleaning
» Sorting all quantities associated with an object

> For jets: repeat for all systematic variations
> .

(*): not the only way to do it, but conclusion remains

Enter bamboo: decorated trees

In bamboo, this reduces to:

from bamboo import treefunctions as op
from bamboo.plots import Plot

Plot.makelD(..., op.invariant_mass(tree.Muon[0].p4, tree.Muon[1].p4), ...)

» |dea: decorate tree — provide a view of the event content as a set of
(collections of) physics objects in the form of “proxies” (python objects)

» User builds expressions (cuts, variables, ...) from these proxies

» When done: Bamboo converts expressions to appropriate (C++) strings,
builds RDataFrame, runs event loop

> Same user-facing proxy (e.g. tree.Jet) can represent different
collections/branches: systematic variations automatically handled

(different columns in generated RDF graph)

Under the hood: proxies and operations

» Operations (backend):
» Can be directly converted to C++ strings for compiling
» Simple python objects, immutable — can be modified through a clone, e.g.
for systematic variations
» Proxies (user-facing):
» Represent objects in the tree, and quantities derived from those
> Behave like the value they represent (list, float, LorentzVector, ...)
> Wrap operations (can be several, e.g. for systematics)
» Fairly complete list of implementations to work with proxies
> Tree proxies automatically generated based on the branches found
> “Groups” (tree.pdf.x1), collections (tree.Muon[6].pt), objects with
methods (tree.Muon[0].p4.E()), refs. to other collections
(tree.Muon[0].Jet.btagDeepB), indices (SortedJets[0].idx)
» Proxy mechanism not tied to NanoAOD: TTree decoration can be adapted
to ~ any tree format, see e.g. Snowmass [1][2], Delphes

https://bamboo-hep.readthedocs.io/en/latest/treefunctions.html
https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/bamboo/treedecorators.py#L709
https://github.com/cp3-llbb/WWGGSnowMassAnalysis
https://github.com/pieterdavid/bamboo-delphesexample

Proxies for more complex tasks

» Select muon and jets

» Clean jets from selected muons, sort jet collection

» Build all unique combinations of 3 jets

> Find 3-jet combination with total invariant mass closest to given value
Get b-tag value of leading jet of among those 3 jets

v

muons = op.select(tree.Muon, lambda mu:
op.AND(mu.pt > 30., op.abs(mu.eta) < 2.4))

jets = op.select(tree.Jet, lambda j: op.AND(j.pt > 30., op.abs(j.eta) < 2.4))

cleanedJets = op.select(jets, lambda j: op.NOT(
op.rng_any(muons, lambda mu: op.deltaR(mu.p4, j.p4) < 0.4)))

sortedJets = op.sort(cleanedJets, lambda j: -j.pt)
triJets = op.combine(sortedJets, N=3)

XjjjCand = op.rng_min(triJets, lambda jjj:
op.abs(op.invariant_mass(jjjl0].p4 + jjjl[1].p4 + jjjl[2].p4) - mX))

leadCandBtag = XjjjCand[0].bTagDeepB

Selecting and plotting events: basic building blocks

Selection object

» Holds cuts and weights

» Start from inclusive selection (all events), unit weight
> Gradually refine selection: add cuts and/or weights

» RDF: Filter nodes

Declaring a plot

> Requires only selection object, and plotted quantity(ies)

» Fill single or multiple entries (collection) (per-entry weight supported)
» RDF: HistonD nodes (only N < 3 supported atm)

Selecting and plotting events: basic building blocks

Selection object

» Holds cuts and weights

» Start from inclusive selection (all events), unit weight
» Gradually refine selection: add cuts and/or weights

» RDF: Filter nodes

Declaring a plot

> Requires only selection object, and plotted quantity(ies)

» Fill single or multiple entries (collection) (per-entry weight supported)
» RDF: HistonD nodes (only N < 3 supported atm)

More advanced functionalities follow ~ same interface:

> Selections for data-driven estimations
> Categorized selections (e.g. concisely handle multiple lepton flavours)
> . 6

https://bamboo-hep.readthedocs.io/en/latest/recipes.html#data-driven-backgrounds-and-subprocesses
https://bamboo-hep.readthedocs.io/en/latest/apiref.html?highlight=categorizedselection#bamboo.plots.CategorizedSelection

Selecting and plotting events: basic building blocks

Selection object

» Holds cuts and weights

» Start from inclusive selection (all events), unit weight
» Gradually refine selection: add cuts and/or weights

» RDF: Filter nodes

Declaring a plot

> Requires only selection object, and plotted quantity(ies)

» Fill single or multiple entries (collection) (per-entry weight supported)
» RDF: HistonD nodes (only N < 3 supported atm)

Notes:

» Skims also supported: snapshot (more later)
» pefine nodes also inserted in the RDF graph (typically before first Filter
node that uses them, to avoid recomputing quantities) 6

https://bamboo-hep.readthedocs.io/en/latest/recipes.html#producing-skimmed-trees

Alternative “backends”

Different methods of constructing the RDataFrame:

1. “Lazy” (default):
» First register all selections, plots, ...in Bamboo
» Then create the RDataFrame
> Advantage: ordering of Define/ Filter nodes handled by Bamboo
2. “Debug™
» (Create RDataFrame nodes eagerly as user builds expressions in Bamboo
> Useful to detect problems with RDF building earlier
» User has to think about ordering of definitions for efficiency
3. “Compiled”:
» As “lazy”, but no JITing: generate full C++ code for standalone executable,
call external compiler
» Advantage: can use compiler optimizations inject debugging symbols, ...
> In practice, compilation of realistic analysis with optimizations is too slow
> Considering to discontinue (optimizations now usable in cling, debugging
hopefully soon)

Selecting and plotting events

from bamboo.plots import Plot, EquidistantBinning as EqBin
from bamboo import treefunctions as op

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
plots = []

muons = op.select(t.Muon, lambda mu:
op.AND(mu.pt > 30., op.abs(mu.eta) < 2.4))

muSel = noSel.refine("1mu", cut=(op.rng_len(muons) == 1))

plots.append(Plot.makelD("mu_pt", muons[@].pt, muSel,
EgBin(100, 30., 130.), title="Muon pt"))

jets = op.select(t.Jet, lambda j: op.AND(j.pt > 30., os.abs(j.eta) < 2.4))
mu4JetSel = muSel.refine("1mu_43j", cut=(op.rng_len(jets) >= 4))

plots.append(Plot.makelD("jet_pt", op.map(jets, lambda j: j.pt),
mu4JetSel, EqBin(100, 30., 130.), title="All jets pt"))

return plots

Caveat: merging selections is not possible (limitation of RDF); helpers
provided to add histograms from distinct selections in a postprocessing step
8

https://bamboo-hep.readthedocs.io/en/latest/recipes.html#make-combined-plots-for-different-selections

Systematic uncertainties

» If an expression is marked as having systematic variations, Bamboo will
automatically branch the RDF graph, create histogram variations only
when needed

» Single event loop, all systematics computed on-the-fly

» Variations are solely identified by their full name, not limited to up/down
E.g. psISRup, psISRdown, pdf1, pdf2 ..

> Different expressions with the same variation name are varied together
— correlate e.g. effect of JES on jet kinematics and b-tagging SFs

» Configuring simple weight-based systematic uncertainties:

psISRSyst = op.systematic(1., name="psISR",
up=tree.PSWeight[2], down=tree.PSWeight[0])

pdfSysts = op.systematic(1.,
#+{ f'pdf{i}": tree.LHEPdfWeight[i] for i in range(1, 101) })

selWithSysts = noSel.refine("withSysts", weight=[psISRSyst, pdfSysts])

» 1 variation = 1 histogram: shows its limits with many variations
— use Josh Bendavid’s narf? (systematic index as extra dimension) .

https://github.com/bendavid/narf

Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.

class BasicPlots(NanoAODHistoModule):
def definePlots(self, tree, noSel, sample=None, sampleCfg=None):

return plots

Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

tree: Events

eras:
2018UL:
luminosity: 59830.
samples:
TTToSemilLeptonic__2018UL:
era: 2018UL

db: das:/TTToSemilLeptonic_TuneCP5_13TeV-powheg-pythia8/.../NANOAODSIM
cross-section: 365.35
generated-events: genEventSumw

Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims

Running an analysis

Running an analysis in Bamboo requires:
1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.
2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims

»> Analysis description is contained in user module + config file
> Independent of how the events are processed

» Single entry point: bambooRun — choose processing mode through
command-line arguments, no changes to analysis code necessary

Running an analysis

Running an analysis in Bamboo requires:
1. An analysis module deriving from a base class — reuse Bamboo's
facilities for sample bookkeeping, job submissions, etc.
2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml
Result: one file per sample, containing all histograms/skims
Need one RDF graph/sample:
» Different data-taking eras — different cuts, scale factors, systematics
» Differences in data vs. MC (background) vs. MC (signal)

» Specific selections for data-driven estimations
> MC: sample-dependent uncertainties

Processing modes: sequential

% bambooRun ... [--distributed sequential] [--threads 4]

» Default mode, mostly useful for quick tests
» Small memory overhead from every RDF
» Advantage: JITted symbols can be reused across graphs

» Can use implicit multithreading or distributed RDF

Sample 1: Sample 1:
.
build graph process

Sample 2: Sample 2:
build graph process P

1

Processing modes: parallel

% bambooRun ... --distributed parallel [--threads 4]

» Use RDF: :RunGraphs

» Need to build all RDF graphs first

» Small memory overhead from every graph

» Advantage: JITted symbols can be reused across graphs
» Can use implicit multithreading or distributed RDF

Sample 1:
process
e e
AMBOORUNF™1) i1 graph [| build graph P

Sample 2:
process

Processing modes: batch

% bambooRun ... --distributed driver [--threads 4]

» Submit jobs on a cluster (HTCondor, Slurm supported)

> Monitoring loop, combines results for one sample as soon as its jobs are
done — no overhead

» Some duplication of work: every job builds a graph (— IMT on nodes)

» Usual limitations of batch processing: manual splitting, job failures...

Sample 1: N Sample 1:
build graph process files 1-N//2

Sample 1: R Sample 1:
build graph process files N//2-N
(bambooRunH = zzzzzzzzzzzzzzzffzzzzss
Sample 2: Sample 2:

. —>
build graph process files 1-N//2

Sample 2: N Sample 2:
build graph process files N//2-N

Distributed processing

% bambooRun ... --distributed parallel --distrdf-be dask_slurm

» Experimental support of distributed RDataFrame with Dask or Spark

» In practice, currently most relevant is Dask with jobqueue

> |nitial difficulties in properly propagating environment & dependencies
to workers, now solved

» Optimal splitting (number of tasks) not obvious
Every task needs to re-build graph + JIT? overhead?

» Still missing: Numba support (WIP?)

Dask/jobqueue experience

» Observed scaling issues (large graphs): fixed soon?

» Stability issues (killed workers, timeouts): can error handling be
improved in distRDF or should this be understood/solved in Dask?

> “Stuck” clusters: all jobs cancelled, but client keeps running

» Properly configuring & tuning Dask-distributed/jobqueue is delicate...
14

https://gitlab.cern.ch/cp3-cms/bamboo/-/merge_requests/218
https://distributed.dask.org/en/stable/
https://spark.apache.org/docs/latest/api/python/
https://jobqueue.dask.org/en/latest/index.html
https://github.com/root-project/root/pull/10459

Customization hooks

Users’ modules can also easily:

» Add command-line arguments, passed from bambooRun

» Extend the configuration file syntax (e.g. better handling of
samples/eras)

» Configure the tree decorations (e.g. jet systematics)

> Further post-process the outputs, profit from available metadata

Some post-processing typically necessary to use results e.g. in Combine
(rescale, move, rename histograms)

class BasicPlots(NanoAODHistoModule):
def addArgs(self, parser):

def customizeAnalysisCfg(self, analysisCfg):

def prepareTree(self, tree, sample=None, sampleCfg=None):

def postProcess(self, taskList, config=None, workdir=None, resultsdir=None):

More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNS; ...
— fairly complete set of features and recipes collected, e.g. for:

16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html

More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNS; ...
— fairly complete set of features and recipes collected, e.g. for:

» Evaluating MVAs: TMVA (RReader), Tensorflow, PyTorch, ONNX Runtime
(C/C++ APIs)

from bamboo.treefunctions import mvaEvaluator
mu = tree.Muon[0]

dnn = mvaEvaluator("dnn.pt", mvaType="Torch")
dnn_out = dnn(mu.pt, mu.eta, mu.phi)

ele_bdt = op.mvaEvaluator("BDT.weights.xml", mvaType="TMVA")
ele_MVA = op.map(tree.Electron, lambda el: ele_bdt(el.dxy, el.sip3d, ...)[0])

tree.Electron.valueType.mva = treedecorators.itemProxy(ele_MVA)

tree.Electron[0].mva

» Limitation of RDF: no batch evaluation of MVAs
— complex DNNs can be slow (improved by SOFIE!?)

» Need to produce skims for MVA training -

https://bamboo-hep.readthedocs.io/en/latest/recipes.html
https://root.cern/doc/master/classTMVA_1_1Experimental_1_1RReader.html

More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNSs; ...
— fairly complete set of features and recipes collected, e.g. for:

» Producing skims: add new branches, keep input branches, ..skims can
then also be reprocessed by Bamboo

twoMuSel = noSel.refine("twoMuons", cut=[op.rng_len(muons) > 1])
plots.append(Skim("dimuSkim", {

"run": None, "event": None,

"dimu_M": op.invariant_mass(muons[0].p4, muons[1].p4),
}, twoMuSel,

keepOriginal=Skim.KeepRegex(""(n)?Electron.*$")))

16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html

More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNSs; ...
— fairly complete set of features and recipes collected, e.g. for:

Storage needs & skims
> Typical workflow: 1) request local replica (Rucio) of NanoAOD samples
(0(10) TB at T2/T3); 2) Produce final histograms in one go

> Or, skim with Bamboo (remote xrootd access: slow, but do it once), store
only skims locally
(but variations still computed on-the-fly — lightweight skims!)

» Skims follow same (NanoAOD) schema — same Bamboo user code can
can produce and use skims, see example

> Writing skims as RNtuple could be interesting! (not supported yet in RDF)

> Essentially a caching issue... possibilities to improve site caching, avoid
manual skimming step & local replicas?

https://bamboo-hep.readthedocs.io/en/latest/recipes.html
https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/examples/preselectskim.py

More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNS; ...
— fairly complete set of features and recipes collected, e.g. for:

Data-driven background estimations

Splitting an MC sample into sub-components

Using user-defined functions or classes in C++ or python+Numba

Jet & MET variations

>
>
>
» Producing cut flow reports, generate yield tables (Latex)
>
» Rochester muon momentum corrections

>

(see backup)

16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html

Performance, in practice

Example case: 150 plots of ~ 50 bins, 70 variations each (out of which 25
on-the-fly jet variations) — ~ 10k Histo1D, 3k Define

Memory

» Batch mode (single graph): < 1.5 GB
> Sequential/parallel: ~ 1 GB upfront, < 10 MB for each additional RDF

Event throughput

> With systematics, single-threaded, reading from HDD through LAN: ~ kHz

» 2-5x slower with 50-150 variations than without: much more efficient
than re-running event loop for every variation (even when restricting to
jet variations)

> Time to insight: few hours on batch system for full Run2: could be

better? tail of slow jobs, random FS failures spoil the picture...(use
intermediate skims?) — distributed RDF expected to help

Sore points: from more to less Bamboo-specific

> Entry point = executable, results written to files — no interactive
exploration possible (e.g. notebooks)

» Finding efficient patterns for implementing small
studies/changes/checks during review can be difficult

» Postprocessing of outputs: available metadata (e.g. in postProcess
method) helps, but manipulating TFile's + THN'S is awkward
Get python boost-histograms, put everything in single pd.DataFrame?

> Default postprocessing not well suited for combining/comparing outputs
from different runs

» Abstractions: only interact with proxies, lazy event loop in RDF
— interactively inspecting data, individual events not possible

» Debugging with jitted RDF is difficult (improvements soon?)

» Batch processing: too many manual inputs (job splitting), actions
(managing failed jobs) needed (distRDF to the rescue?)

Ongoing, planned developments

> Finalize integration of distributed RDF

> Integrate RDF: :Vary (automatic systematics in RDF)
— simplify graph, lighter+faster!

» MVA evaluation: support SOFIE

> Incremental runs: every expression has a unique hash — store them,
detect what changed w.rt. a previous run, only re-process what changed
+ detect set of unique RDF graphs among all processed samples, re-use
existing graph on several samples (if ever possible in RDF)?

> Move beyond bambooRun as single entry point — integrate with workflow
management tools?

> Easier postprocessing with pyPlotlt

Caveat: only one active maintainer...

19

Documentation and examples

» Documentation
» Repository (includes examples)
» OpenData examples — run on binder!

> Ixplus demo with systematics (requires CMS access)

bamboo

»Bamboo: A high-level HEP analysis library for ROOT::RDataFrame View page source

Bamboo: A high-level HEP analysis library for
ROOT::RDataFrame

Introduction

Installation and setup

The RDataFrame class provides an efficient and flexible way to process per-event information
(stored in a TTree) and e.g. aggregate it into histograms.

With the typical pattern of storing object arrays as a structure of arrays (variable-sized branches
with a common prefix in the names and length), the expressions that are typically needed fora
complete analysis quickly become cumbersome to write (with indices to match, repeated sub-
expressions etc.). As an example, imagine the expression needed to calculate the invariant mass of

20

https://bamboo-hep.readthedocs.io/
https://gitlab.cern.ch/cp3-cms/bamboo
https://github.com/pieterdavid/bamboo-opendata-examples
https://gitlab.cern.ch/swertz/bambooexamples/-/blob/attf-review/

Conclusions

» RDataFrame: write physics, not loops

» Writing a full analysis from scratch using RDF still
requires re-inventing a lot of wheels

» RDF is (still quite) low level..Bamboo provides a high-level analysis
description language embedded in familiar Python
»> Fast and efficient processing of stock NanoAODs, no custom intermediate
ntuples needed
» Not tied to CMS or NanoAOD: can be adapted to ~ any format
» In use for 3 years, 6-7 analyses so far, ~ 10-15 active users (AFAIK)
» Future hinges on finding additional developers...

» Some features upstreamed to RDF
» Join the discussion on Mattermost! (CMS only)

21

https://mattermost.web.cern.ch/cms-exp/channels/bamboo

Conclusions

» RDataFrame: write physics, not loops

» Writing a full analysis from scratch using RDF still
requires re-inventing a lot of wheels

» RDF is (still quite) low level..Bamboo provides a high-level analysis
description language embedded in familiar Python
»> Fast and efficient processing of stock NanoAODs, no custom intermediate
ntuples needed
» Not tied to CMS or NanoAOD: can be adapted to ~ any format
» In use for 3 years, 6-7 analyses so far, ~ 10-15 active users (AFAIK)
» Future hinges on finding additional developers...

» Some features upstreamed to RDF
» Join the discussion on Mattermost! (CMS only)

Thank you!

21

https://mattermost.web.cern.ch/cms-exp/channels/bamboo

Backup

Default postprocessing

CMS Preliminary 138 fb (13 TeV)

T T
1lepton (e/}), 2 6 jets, 24 b

» By default: write YAML config with list of plots
and files, and call Plotlt: C++ tool to produce
stacked plots using ROOT

ey A

Events / 0.09

Sy

7 Uncertainty |

N

A
e

» Fairly configurable (long list of options) but too
rigid at the same time: good for data vs. MC stack
+ ratio, not much else

» Plan: move to python-based pyPlotlt

» Re-use configuration file structure
» More flexible manipulations, stacks, ratios, ...
» UHI-compatible, can be used with mplhep

from matplotlib import pyplot as plt
import mplhep, plotit; from plotit import Stack
config, samples, plots, systematics, legend = plotit.loadFromYAML(cfgName

AR
RN

-

A -

Data / MC

05 1 15 2 25 3

Extra jets A R(bb)

for p in plots:
expStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type=="MC"

1)
obsStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type=="
DATA"])

mplhep.histplot(obsStack, histtype="errorbar", color="k")
mplhep.histplot(expStack.entries, stack=True, histtype="fill",
~alnr=La ctvle 111 rFnlnr frr o in avyn<+ark antriacl)

https://cp3-llbb.github.io/plotit/
https://pyplotit.readthedocs.io/en/latest/index.html
https://uhi.readthedocs.io/en/latest/
https://mplhep.readthedocs.io/

Data-driven background estimations

> Replace contribution of sample A/region SR with contribution from
sample B/region CR + applied weights (e.g. fake rate transfer factor)

datadriven:
chargeMisID:
uses: [data] # sample B
replaces: [DY] # sample A
nonprompt:
uses: [data]
replaces: [TThar]

hasSameSignElEl = SelectionWithDataDriven.create(hasELEL,
"hasSSDiEl", "chargeMisID",
cut=(diel[0].Charge == diel[1].Charge),
ddCut=(diel[@].Charge != diel[1].Charge),
ddWeight=p_chargeMisID(diel[@]) + p_chargeMisID(diel[1]),
enable=any("chargeMisID" in self.datadrivenContributions and
self.datadrivenContributions["chargeMisID"].usesSample(sample,
sampleCfg)))

> SelectionWithDataDriven.create Similar to usual Selection.refine
> Resulting object behaves as any selection — refine, make plots etc.

Calling user-defined custom functions or classes

» Declare function, wrap it in a proxy, use it to build expressions:

ROOT.gInterpreter.Declare(

)

myFun = op.extMethod("computePDFWgtMean", returnType="float")
newSel = noSel.refine("avgWgt", weight=myFun(tree.LHEPdfWeight))

» Or use Numba:

import numpy as np
@ROOT.Numba.Declare(['RVec<float>'], 'float')
def computePDFWgtMean(weights):

return np.mean(weights)

myFun = op.extMethod("computePDFWgtMean", returnType="float")
newSel = noSel.refine("avgWgt", weight=myFun(tree.LHEPdfWeight))

Calling user-defined custom functions or classes

» Or use external code: myHeader.h

class MyCalc {
public:
MyCalc(std::string path) { ... }
evaluate(float pt) { ... }

i

» Then load dependencies:

bamboo. root.loadDependency(headers=myHeader.h, libraries=...)

> Finally, instantiate object and call its method:

myCalc = op.define("MyCalc", 'const auto <<name>> = MyCalc("file.root");")

myCorr = myCalc.evaluate(tree.Muon[0].pt)

» Note: <<name>> automatically replaced by Bamboo, makes sure symbols
are unique

Example of extending configuration file

» Include additional information, e.g. tag signal processes

> Single entry for all eras — duplicate entry in customizeAnalysisCfg(),
add era tag to config and __era suffix to sample name

> Splitting sample into sub-components
» Handling systematic variations from alternative samples

TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8:
dbs:
2017UL: das:/TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8/
RunIISummer20UL17NanoAODv9-106X_mc2017_realistic_v9-v1/NANOAODSIM
2018UL: das:/TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8/
RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1vi-v1/
NANOAODSIM
subprocesses: ['ttB', 'ttcc', 'ttjj'l
signal_subprocesses: ['ttB']
signal_tag: "powheg_5FS"
cross-section: #xs_tt_21
syst: ['hdampup', 'TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8"']
generated-events: genEventSumw

tematic uncertainties: scale fac

» CMS's correctionlib: JSON schema + reading library, recommended
method for reading scale factors & associated variations:

from bamboo.scalefactors import get_correction

elIDSF = get_correction("EGM_POG_SF_UL.json", "UL-Electron-ID-SF",
params={ "pt": lambda el: el.pt, "eta": lambda el: el.eta,

"year": "2018UL", "WorkingPoint": "Loose" },
systParam="ValType", systNomName="sf",
systName="elID", systVariations=("sfup", "sfdown"))

looseEl = op.select(tree.Electron, lambda el: el.looseId)
withDiEl = noSel.refine("withDiEl",

cut=(op.rng_len(looseEl) >= 2),
weight=[elIDSF(looseEl[0]), elIDSF(looseEl[1]) 1)

> CorrectionSet object declared once to gInterpreter, can be reused
across samples

» Typically, evaluated SFs are always Define-d as a new column
— avoid unnecessary re-evaluations

https://cms-nanoaod.github.io/correctionlib/

Systematic uncertainties: jet & MET

» Utility (now available as standalone package) to:
> Re-apply JECs, smear jets, compute JEC & JER variations (regular & fat)
> Propagate all those to MET (Type-1 MET)
» C++ RDF-friendly or standalone, python through pyROOT
> Originally based & validated on nanoAOD-tools implementation
» Bamboo: jets/MET kinematic variations are computed on-the-fly,
automatically propagated to selections & plots

from bamboo.analysisutils import configureJjets
configureJets(tree._Jet, "AK4PFchs", jec="Summer19UL18_V5_MC",
smear="Summer19UL18_JRV2_MC",

jesUncertaintySources="Merged", regroupTag="Vv2",
splitJER=True, addHEM2018Issue=True)

» Caching of SF txt files from JECDB — will now move to correctionlib

» Need to centrally maintain these features — in this form or another
(out of scope for correctionlib?)

> Note: Bamboo can also read variations from postprocessed nanoAODs

https://gitlab.cern.ch/cp3-cms/CMSJMECalculators
https://github.com/cms-jet/JECDatabase/tree/master/textFiles

More details on JetMET tool

» Supported corrections:
> AK4 jets & fat jets: apply JEC (any levels), JER, uncertainties
(total/merged/split), JER uncertainty splitting, ad-hoc uncertainty for HEM18
» |n addition, for fat jets: JMS, JMR, GMS, GMR, Puppi corrections
» Full Type-1 MET recipe
» EE2017 noise fix recipe for MET

> Seed is passed explicitly — full reproducibility

» TODO: better handling of recipe evolution (e.g. EOY — UL): new classes?
tag new version and deprecate the old?

More details on JetMET tool

» Config helper for instantation:

from CMSJIMECalculators import config as calcConfigs
config = calcConfigs.JetVariations()
from CMSJIMECalculators.jetdatabasecache import JetDatabaseCache
jrDBCache = JetDatabaseCache("JRDatabase", repository="cms-jet/JRDatabase")
config.ptResolutionSF = jrDBCache.getPayload(
"Summer16_25nsV1_MC", "SF", "AK4PFchs")

calc = config.create()

» Or create directly in C++:

’auto calc = JetVariationsCalculator::create(jecParams, jesUncs, ...); ‘

» Can be used:
» From C++ & from RDataFrame

’df.Define("ak4JetVars”, "calc.produce(Jet_pt, Jet_eta, ...)") ‘

» From python through pyROOT

from CMSJMECalculators.utils import toRVecFloat, toRVecInt
jetVars = calc.produce(
toRVecFloat(tree.Jet_pt), toRVecFloat(tree.Jet_eta), ...)

Getting a specific variation

> Jet variations: original collection available as tree._Jet[" “nominal''],
other variations directly accessible as tree._Jet[“jesTotalUp''] etc.
jet.idx always refer to index in original collection

» Get a specific variation for any expression:

triJets = op.combine(sortedJets, N=3)

XjjjCand = op.rng_min(triJets, lambda jjj:
op.abs(op.invariant_mass(jjj[0].p4 + jjjl[1].p4 + jjjl[2].p4) - mX))

leadCandBtag = XjjjCand[0].bTagDeepB

leadCandBtag_jesTotalUp = op.forSystematicVariation(leadCandBtag, "jesTotalUp")

» Useful for debugging, skims...

Analysis preservation

» Bamboo: analysis code should be kept outside of framework itself, in
separate Git repository

» bambooRun output folder — contains version.yml file with Git commit of
analysis code (& Bamboo itself), and full list of command-Lline
arguments to bambooRun used to produce the results
— all the information needed to reproduce the results

> Different levels of enforcement policies, chosen by user: “testing”

”ou " ou

(default: no check, only print warning), “committed”, “tagged”, “pushed”

WARNING:bamboo.workflow:Running with commit 8ffc100 for config and module. Please
tag (and push) for better traceability

Other development ideas

> Proper type system for proxies, better operator overloading (e.g. Rvec
broadcasting)

» Support indexed friend trees

> Control/restrict systematic variations at the selection or plot level

”

(current approach is “take-all”)

	Appendix

